Enhanced Proliferation Resistance and Safeguards Technology for Nuclear Energy

Keynote Address

William D. Magwood, IV, Director
Office of Nuclear Energy, Science and Technology
U.S. Department of Energy

May 20, 2003

The National Energy Policy and Nuclear Power

"The NEPD Group recommends that the President support the expansion of nuclear energy in the United States as a major component of our national energy policy."

Report of the National Energy Policy Development Group, May 2001

Calvert Cliffs Nuclear Power Plant

Recommendations:

- Support expansion of nuclear energy in the United States
- ◆ Develop advanced nuclear fuel cycles and next generation technologies
- Develop advanced reprocessing and fuel treatment technologies

National

Challenges for Expanding Nuclear Energy in the U.S.

- ♦ Nuclear technologies present opportunities for a world economy characterized by zero net greenhouse gas emissions
- ◆ Concerns over the potential for increased availability of weapons - usable material is an obstacle to increased use of nuclear energy
- ◆ Through technology development, nuclear energy expansion can be safe, secure, economical, and environmentally beneficial

Development of Proliferation Resistant Technologies: Advanced Fuel Cycle Initiative

♦ AFCI objectives:

- Reduce the volume of high-level nuclear waste
- Reduce the cost and optimize the performance of Yucca Mountain repository
- Reduce the toxicity of high-level nuclear waste
- Provide long-term fuel source for U.S. nuclear power
- Reduce inventories of civilian plutonium

Development of Proliferation Resistant Technologies: *Advanced Fuel Cycle Initiative*

♦ AFCI will develop:

- Treatment technologies that eliminate the separation of pure plutonium
- Advanced nuclear fuels that contain plutonium and minor actinides

◆ Accomplishments to date:

- Demonstrated uranium separation at 99.999 percent purity
- Demonstrated fabrication of proliferation resistant nitride and metal fuels

Approaches to Spent Fuel Management

Development of Proliferation Resistant Technologies: *Advanced Fuel Cycle Initiative*

Joint NE and NNSA efforts in Advanced Fuel Cycle Initiative

- Developing instrumentation and management controls to monitor flow of materials in fuel recycle facilities
- Established Blue Ribbon Panel for the evaluation of proliferation resistant fuel cycles
 - Balancing intrinsic and extrinsic proliferation resistance requirements

Development of Proliferation Resistant Technologies: *Generation IV Nuclear Energy Systems*

 Gen IV will develop advanced reactor and fuel cycle systems

System designs guided by technology goals in four

goal areas:

Sustainability

- Economics
- Safety and reliability
- Proliferation resistance and physical protection

Development of Proliferation Resistant Technologies: Generation IV Nuclear Energy Systems

- Joint NE and NNSA Program on Proliferation Resistance and **Physical Protection of Generation IV Concepts**
 - Formed Expert Group which includes representatives from national laboratories, academia, Generation IV International Forum
 - Develop methodology for the assessment of Generation IV systems
 - Develop proliferation resistance and physical protection metrics
 - Issue first draft of methodology in December 2003

United Kingdom

Switzerland

South Korea

South Africa

Japan

France

Canada

Brazil

Argentina

New Technology Can Lead to New Policy

Linking policy and technology

- Past policies were made based on past technology
- Development of new technology can lead to significant policy shifts

♦ Examples of new technology

- Sealed reactor cores
 - Operates for decades
 - Can be returned intact to a safe and secure internationally-controlled area
- Stand-off laser analytical methods
 - Capable of measuring a wide range of elements and isotopes

Proposed Challenges for this Workshop

- Consider opportunities for further enhancing the "handshaking" between intrinsic and extrinsic proliferation safeguards
- ◆ Suggest future enhancements to the international nonproliferation regime that parallel DOE's ambitious next-generation nuclear technology agenda

